Promotion effect of hypervalent iodine compounds on the reactions of 3-hydroxy-4-nitrofurazan with cycloalkenes

A. B. Sheremetev, * E. V. Mantseva, and D. E. Dmitriev

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: sab@ioc.ac.ru

It is known^{1,2} that 4-nitrofurazan-3-olate anion exhibits no nucleophilic properties and reacts, like picrate anion, only with very strong nucleofuges. 3-Alkoxy(phenoxy)-4-nitrofurazans can be obtained either by replacing the nitro group in 3,4-dinitrofurazan under the action of the corresponding alkoxides or phenoxides³⁻⁵ or by oxidizing the amino group in the corresponding aminofurazans into a nitro group.^{6,7}

Studies on the functionalization of olefins promoted by hypervalent iodine derivatives⁸ have shown that such weak nucleophiles as CF₃CO₂⁻, TsO⁻, CF₃SO₃⁻, and ClO₄⁻ can add to olefins. It is worth noting that different nitrophenols and hydroxy derivatives of heterocycles react with hypervalent iodine compounds differently.⁸

It was shown recently⁹ that 4-nitrofurazan-3-olate anion is a perfect counterion to alkynyliodonium cations. In continuation of these investigations, we performed reaction of 3-hydroxy-4-nitrofurazan (1) with iodosylbenzene and found that an adduct of type 2 or 3 was formed. The addition of the latter to cyclopentene or cyclohexene yielded the corresponding 1,2-bis(4-nitrofurazan-3-yloxy)cycloalkanes 4a,b (Scheme 1).

Melting points were determined on a Koffler stage. Natural-isotope ¹H, ¹³C, and ¹⁴N NMR spectra were recorded on a Bruker AM-300 spectrometer (300.13, 75.7, and 21.5 MHz, respectively) in CDCl₃ (with nitromethane as the external standard for the ¹⁴N NMR spectra). Mass spectra were obtained with Varian MAT CH-6 and Varian MAT CH-111 instruments (70 eV). IR spectra were recorded on a Specord IR-75 spectrometer. The course of the reaction was monitored, and the purity of products was checked, by TLC on Silufol UV-254 plates.

A solution of compound 1 (2 g, 0.015 mol) in anhydrous CH_2Cl_2 (~30 mL) was added at 0 °C to a suspension of PhIO (3.3 g, 0.015 mol) in the same solvent (~20 mL) in an atmosphere of argon. After stirring at 20 °C for 1 h, the reaction mixture became homogeneous. Cyclohexene (1.5 g, 0.018 mol) was added, and stirring was continued for 24 h in the absence of moisture. The reaction mixture was washed with water, filtered through a thin layer of silica gel, and concentrated *in vacuo*. Column chromatography of the residue (silica gel 40/100, light petroleum—CH₂Cl₂, 10 : 1) gave 1,2-bis(4-nitrofurazan-3-yloxy)cyclohexane 4b as colorless crystals, yield 52%, m.p. 95.5—96.5 °C. MS (EI, 70 eV), m/z: 342 [M]⁺, 296 [M — NO₂]⁺, 266 [M — NO₂ — NO]⁺, 250 [M — 2 NO₂]⁺. IR (KBr), v/cm^{-1} : 2944, 1604, 1544, 1494, 1368, 1208, 1040, 1000, 920, 832. ¹H NMR, δ : 1.55 (br.m,

Scheme 1

$$O_{2}N OH OH ODI Ph O$$

n = 1 (a), 2 (b)

6 H, CH₂CH₂CH₂, C \underline{H}_{eq} CHO); 2.37 (br.d, 2 H, C \underline{H}_{ax} CHO); 4.75 (br.dd, 2 H, CHO). ¹³C NMR, δ: 21.5 (CH₂CH₂CH₂); 27.5 (\underline{C} H₂CHO); 83.3 (CHO); 153.8 (C(4′)); 157.0 (C(3′)). ¹⁴N NMR, δ: -41.2 (NO₂).

4a,b

Cyclopentene reacts analogously to give 1,2-bis(3-nitro-furazan-4-yloxy)cyclopentane **4a** as colorless crystals, yield 32%, m.p. 107—108 °C.

It should be noted that compound 1 reacts with cyclohexene also in the presence of (diacetoxy- λ^3 -iodanyl)benzene PhI(OAc)₂. However, the yield of compound 4b is no higher than 10%. According to GL/MS data, a complex mixture of the reaction products contains 1,2-diacetoxycyclohexane (m/z 200 [M]⁺) and 1-acetoxy-2-(4-nitrofurazan-3-yloxy)cyclohexane (m/z 271 [M]⁺).

It is known⁸ that trifluoromethanesulfonate and perchlorate anions react stereospecifically with cyclohexene in the presence of hypervalent iodine derivatives to form 2480

cis-adducts. The ¹H and ¹³C NMR spectra of compounds 4a,b recorded at ~20 °C and at -20 °C contain broadened signals, which precludes any conclusion about the stereospecificity of the reaction of furazan 1 with cycloalkenes. This broadening is probably due to the interaction between the closely spaced bulky nitrofurazanyl substituents rotating freely about the C-O bond.

Thus, it was shown for the first time that hypervalent iodine derivatives promote the addition of the nonnucleophilic 4-nitrofurazan-3-olate anion to cycloalkenes.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 01-03-32944).

References

- 1. A. B. Sheremetev, Ros. Khim. Zh. (Zh. Ros. Khim. O-va im. D. I. Mendeleeva), 1997, **41**, No. 2, 43 [Mendeleev Chem. J., 1997, **41**, No. 2, 62 (Engl. Transl.)].
- 2. A. B. Sheremetev, N. N. Makhova, and W. Friedrichsen, in Adv. Heterocycl. Chem., Ed. A. R. Katritzky, Academic Press, London, 2001, 78, 65.

- 3. A. B. Sheremetev and E. V. Shatunova, in *Proc. 28th Int.* Annual ICT-Conf., Combustion and Detonation (24-27 June, 1997), Karlsruhe, FRG, 1997, 94.
- 4. A. B. Sheremetev, V. O. Kulagina, N. S. Aleksandrova, D. E. Dmitriev, Yu. A. Strelenko, V. P. Lebedev, and Yu. N. Matyushin, Propellants, Explosives, Pyrotechnics, 1998, 23, 142.
- 5. A. B. Sheremetev, O. V. Kharitonova, E. V. Mantseva, V. O. Kulagina, E. V. Shatunova, N. S. Aleksandrova, T. M. Melnikova, E. A. Ivanova, D. E. Dmitriev, V. A. Eman, I. L. Yudin, V. S. Kuz'min, Yu. A. Strelenko, T. S. Novikova, O. V. Lebedev, and L. I. Khmelnitskii, Zh. Org. Khim., 1999, 35, 1555 [Russ. J. Org. Chem., 1999, 35 (Engl. Transl.)1.
- 6. A. B. Sheremetev and O. V. Kharitonova, Mendeleev Commun., 1992, 157.
- 7. T. S. Novikova, T. M. Melnikova, O. V. Kharitonova, V. O. Kulagina, N. S. Aleksandrova, A. B. Sheremetev, T. S. Pivina, L. I. Khmelnitskii, and S. S. Novikov, Mendeleev Commun., 1994, 138.
- 8. P. J. Stang and V. V. Zhdankin, Chem. Rev., 1996, 96, 1123. 9. A. B. Sheremetev and E. V. Mantseva, Tetrahedron Lett.,
- 2001, 42, 5759.

Received June 5, 2001; in revised form October 11, 2001